A Meshless Approach to Spectral Wave Modeling

Adrean Webb

The University of Tokyo
Graduate School of Frontier Sciences

August 7, 2017

Outline

1. Scientific background
2. Coupled wave component
3. Overview of meshless approach
4. Kinematic prototype
5. Discussion

Scales of interest

arbitrary energy scale
$\left[\begin{array}{l} \\ \\ \\ \end{array}\right.$

Figure: Illustration of wave spectra from different types of ocean surface waves (Holthuijsen, 2007).

Spectral wave model approach

The statistical properties on intermediate scales are assumed to vary smoothly with location and the generation, propagation, and evolution of wave spectra are modeled deterministically.

Figure: The random sea of each gridded region in (a) is Fourier decomposed in (b). The statistical differences between neighboring gridded regions are assumed to be small enough such that advection and evolution of wave energy can be modeled by a PDE (Holthuijsen, 2007)

Sample spectral model output

Figure: Global surface Stokes drift on a 1 deg lat $\times 1.25$ deg lon grid.

Wave action balance equation

The wave action balance equation can be derived on a coupled slab $\left(\vec{x}, \vec{k} \in \mathbb{R}^{2}\right)$ from the governing linear wave equations and is given by

$$
\partial_{t} \mathcal{W}+\nabla_{\vec{k}} \Omega \cdot \nabla_{\vec{x}} \mathcal{W}-\nabla_{\vec{x}} \Omega \cdot \nabla_{\vec{k}} \mathcal{W}=\text { Sources }
$$

where

- $\sigma(\vec{x}, \vec{k})=\{g|\vec{k}| \tanh [|\vec{k}| H(\vec{x})]\}^{1 / 2}$ is the intermediate-water dispersion relation
- $\Omega(\vec{x}, \vec{k})=\vec{U}(\vec{x}) \cdot \vec{k}+\sigma(\vec{x}, \vec{k})$ is the Doppler-shifted dispersion relation
- $\mathcal{W}(\vec{x}, \vec{k}, t)=\mathrm{g} \mathcal{S}_{\vec{k}}(\vec{k} ; \vec{x}, t) / \sigma(\vec{x}, \vec{k})$ is the spectral adiabatic invariant
- "Sources" encompass the non-kinematic physics of the waves (generation, dissipation, nonlinear interactions, etc.)

Wave action balance equation

The wave action balance equation can be derived on a coupled slab $\left(\vec{x}, \vec{k} \in \mathbb{R}^{2}\right)$ from the governing linear wave equations and is given by

Spatial transport

$\frac{\partial_{t} \mathcal{W}+\nabla_{\vec{k}} \Omega \cdot \nabla_{\vec{x}} \mathcal{W}-\nabla_{\vec{x}} \Omega \cdot \nabla_{\vec{k}} \mathcal{W}=\text { Sources }}{\text { Spatial changes }}$
where

- $\sigma(\vec{x}, \vec{k})=\{g|\vec{k}| \tanh [|\vec{k}| H(\vec{x})]\}^{1 / 2}$ is the intermediate-water dispersion relation
- $\Omega(\vec{x}, \vec{k})=\vec{U}(\vec{x}) \cdot \vec{k}+\sigma(\vec{x}, \vec{k})$ is the Doppler-shifted dispersion relation
- $\mathcal{W}(\vec{x}, \vec{k}, t)=\mathrm{g} \mathcal{S}_{\vec{k}}(\vec{k} ; \vec{x}, t) / \sigma(\vec{x}, \vec{k})$ is the spectral adiabatic invariant
- "Sources" encompass the non-kinematic physics of the waves (generation, dissipation, nonlinear interactions, etc.)

Wave action balance equation

The wave action balance equation can be derived on a coupled slab $\left(\vec{x}, \vec{k} \in \mathbb{R}^{2}\right)$ from the governing linear wave equations and is given by

Spectral transport

where

Spectral changes

- $\sigma(\vec{x}, \vec{k})=\{g|\vec{k}| \tanh [|\vec{k}| H(\vec{x})]\}^{1 / 2}$ is the intermediate-water dispersion relation
- $\Omega(\vec{x}, \vec{k})=\vec{U}(\vec{x}) \cdot \vec{k}+\sigma(\vec{x}, \vec{k})$ is the Doppler-shifted dispersion relation
- $\mathcal{W}(\vec{x}, \vec{k}, t)=\operatorname{g} \mathcal{S}_{\vec{k}}(\vec{k} ; \vec{x}, t) / \sigma(\vec{x}, \vec{k})$ is the spectral adiabatic invariant
- "Sources" encompass the non-kinematic physics of the waves (generation, dissipation, nonlinear interactions, etc.)

Outline

1. Scientific background
2. Coupled wave component
3. Overview of meshless approach
4. Kinematic prototype
5. Discussion

Scientific Motivation

There is a persistent, shallow mixed layer bias in the Southern Ocean in global climate models (GCMs): Langmuir turbulence missing??

Figure: Satellite observations of Langmuir turbulence after the Deepwater Horizon oil spill (Quickbird)

Figure: Mixed layer bias is reduced in NCAR CESM model runs (Li, Fox-Kemper, Breivik, \& Webb, 2017).

Other studies: Belcher et al. 2012; D'Asaro et al., 2014; Fan \& Griffies, 2014

NCAR CESM now includes a prognostic wave field

Modified NOAA WAVEWATCH III has been coupled to NCAR CESM (Craig, Li, Vertenstein, Webb)

Third-generation model:

- Creates and evolves wave spectra in a coupled spatial-spectral domain
- Uses structured grids (lat-lon, polar)
- Includes extensive physics and parameterizations

Drawbacks for climate use:

- Computational expensive
- 4D problem in time with $6-50 \times 10^{\wedge} 6$ unknowns and nonlinear source terms
- Spatial and spectral singularities at the poles
- Difficult to model polar-ice-free climate scenarios

Figure: Sample spatial (SWH) and spectral output for the coupled NCAR CESM wave component.

Simple WAVEWATCH III cost analysis

WAVEWATCH III version 3.14

$$
\operatorname{Cost}(N)=\alpha N^{1.07}
$$

Figure: WAVEWATCH III cost versus spatial resolution using same time step and fixed spectral grid ($25 f \times 24 \theta$).

- Let N be the number of grid cells. Then running costs are

$$
\operatorname{Cost}(N)=\alpha N^{1.07}
$$

- Using source terms approximately doubles cost since

$$
\begin{aligned}
\log _{2}\left[\operatorname{Cost}_{s r c}\right] & \approx 1+\log _{2}\left[\operatorname{Cost}_{i n}\right] \\
\operatorname{Cost}_{s r c} & \approx 2 \operatorname{Cost}_{i n}
\end{aligned}
$$

- Changing grid resolution can have a dramatic effect on speed

$$
\begin{aligned}
N_{\text {global }} & =N_{x} \times N_{y} \\
N_{\text {coarse }} & =\left(N_{x} / 3.2\right) \times\left(N_{y} / 3.2\right) \\
\text { Cost }_{\text {global }} & \approx 10 \text { Cost }_{\text {coarse }}
\end{aligned}
$$

Outline

1. Scientific background
2. Coupled wave component
3. Overview of meshless approach
4. Kinematic prototype
5. Discussion

RBF and RBF-FD methods

Radial Basis Functions (RBF):

- Uses a meshless node layout
- Solves advective problems with spectral accuracy
- Allows geometric flexibility and local node refinement
- No advective singularities
- Smooth solutions require much fewer unknowns compared with other methods

RBF-Generated Finite Differences (RBF-FD):

- Uses local RBF-generated finite difference formulas to reduce memory count from $O\left(N^{2}\right)$ to $O(N)$
- Well-suited for parallelization (Bollig et al., 2012)

Figure: Example node layout of a bumpy sphere (Fuselier \& Wright, 2012) and possible solid body rotation over the surface (Flyer \& Wright, 2007)

Solving PDEs with the local RBF-FD method

Local RBF-FD Method:

- Creates a set of FD weights (w) that are exact at point $\vec{\alpha}_{s}$ for the RBF (ϕ) centered at each node in the subset

$$
\left[\begin{array}{cccc}
\phi_{11} & \cdots & \phi_{1 n} & 1 \\
\vdots & \ddots & \vdots & \vdots \\
\phi_{n 1} & \cdots & \phi_{n n} & 1 \\
1 & \cdots & 1 & 0
\end{array}\right]\left[\begin{array}{c}
w_{1} \\
\vdots \\
w_{n} \\
w_{n+1}
\end{array}\right]=\left[\begin{array}{c}
(\mathcal{L} \phi)_{s 1} \\
\vdots \\
(\mathcal{L} \phi)_{s n} \\
0
\end{array}\right]
$$

where $\phi_{j i}=\left.\phi\left(\left\|\vec{\alpha}-\vec{\alpha}_{i}\right\|\right)\right|_{\vec{\alpha}=\vec{\alpha}_{j}}$

- Local weights are combined into a banded sparse matrix D such that

$$
\left[\begin{array}{c}
\mathcal{L W}\left(\vec{\alpha}_{1}, t\right) \\
\vdots \\
\mathcal{L W}\left(\vec{\alpha}_{N}, t\right)
\end{array}\right] \approx\left[\begin{array}{ccc}
D_{11} & \cdots & D_{1 N} \\
\vdots & \ddots & \vdots \\
D_{N 1} & \cdots & D_{N N}
\end{array}\right]\left[\begin{array}{c}
\mathcal{W}\left(\vec{\alpha}_{1}, t\right) \\
\vdots \\
\mathcal{W}\left(\vec{\alpha}_{N}, t\right)
\end{array}\right]
$$

Figure: Sample (a) local differentiation weights and (b) global banded matrix (Flyer et al., 2012)

Stabilizing the RBF-FD method with hyperviscosity

Hyperviscosity Filter:

- A high-order Laplacian operator is used to stabilize the RBF-FD method

$$
\partial_{t} \mathcal{W}=-D \mathcal{W}+\gamma \Delta^{p} \mathcal{W}
$$

- The artificial diffusion coefficient is typically in the range of 10^{-20} to 10^{-45}

Figure: Sample eigenvalue spectrum with the RK4 stability domain (solid line) (a) without hyperviscosity and (b) with a Δ^{4}-type hyperviscosity added. (Flyer et. al., 2012)

Outline

1. Scientific background
2. Coupled wave component
3. Overview of meshless approach
4. Kinematic prototype
5. Discussion

Coupled model domains

Spatial:

Directional-Frequency:

RBF-FD WAVE:

RBF-FD-W model (full-4D)

RBF-FD-W Details:

- $\phi(r)=e^{-(\varepsilon r)^{2}}$ for $\varepsilon, r \in \mathbb{R}_{+}^{*}$
- $\vec{\alpha}=(\vec{x}, \vec{k})=\left(x, y, z, k_{x}, k_{y}, k_{z}\right)$ \uparrow
$\vec{\alpha}=(\vec{x}, \vec{f})=\left(x, y, z, \theta_{x}, \theta_{y}, f\right)$
- Polar ice caps for latitudes above and below $\pm 75^{\circ}$
- For constant depth with no currents, the wave action balance equation is given below:

Figure: Sample coupled spatial and directional-frequency domain
$\partial_{t} \mathcal{W}+\frac{\hat{c}_{g}\left(k_{z}\right)}{\sqrt{x^{2}+y^{2}}}\left\{\left(-y k_{x}-x z k_{y}\right) \partial_{x}+\left(x k_{x}-y z k_{y}\right) \partial_{y}+k_{y}\left(x^{2}+y^{2}\right) \partial_{z}+\left(z k_{x} k_{y}\right) \partial_{k_{x}}+\left(-z k_{x}^{2}\right) \partial_{k_{y}}\right\} \mathcal{W}$
$=$ Sources

RBF-FD-W stencil selection (full-3D)

Convergence rates are determined by both the total number of nodes and local stencil size

Figure: Sample spatial and directional stencils for spatial node (1, 0,0) and dominant direction $\pi / 6$. The combined stencil is $17_{\vec{x}} \times 9_{\vec{k}}=153_{\vec{\alpha}}$.

Tuning: Spectral domain

Spectral domain tuning details:

- Stencil sizes: 5, 7, 9, 11
- Global nodes: 24, 36, 48, 60
- Initial bell widths: 60-180 deg

Initial conditions:

Type	Equation	Normalization
Gaussian bell	$\mathcal{W}_{0}(\theta)=\exp \left[-(9 \theta / 2 d)^{2}\right]$	$(2 \sqrt{\pi} d / 9) \operatorname{erf}[9 \pi / 2 d]$
Cosine bell	$\mathcal{W}_{0}(\theta)=\cos ^{2}[\pi \theta / d]$	$d / 2$
	for $\|\theta\|<d / 2 ; 0$ otherwise	

Tuning: Spectral domain

Figure: Spectral advection test with (a) Gaussian bell initial condition and (b-f) relative ℓ_{2} errors after $1 / 4$ revolution.

Tuning: Spatial domain

Tuning: Spatial domain

Figure: Spatial advection test along equator with (a) Gaussian bell initial condition and (b-f) relative ℓ_{2} errors after $1 / 2$ revolution.

Advection in the coupled domains

Test initialized with a spatial and directional Gaussian bell and a 30° dominant direction

$$
3600_{\vec{x}} \times 36_{\vec{k}} \text { global nodes with } 17_{\vec{x}} \times 9_{\vec{k}} \text { stencil }
$$

Figure: (a) Node set with advection path (red), peak Gaussian bell edge (blue), and ice edges (black);
(b) initial spatial Gaussian profile; (c) directional spread about dominant direction

Spectral advection in coupled domain

$3600_{\vec{x}} \times 36_{\vec{k}}$ global nodes with $17_{\vec{x}} \times 9_{\vec{k}}$ stencil

Figure: Select directional node values initialized with a spatial and directional Gaussian bell (60° width).

Initial direction error comparison

Figure: Relative ℓ_{2}^{2} errors after $1 / 2$ revolution for select initial directions.

Global node error comparison

Figure: Relative ℓ_{2}^{2} errors after $1 / 2$ revolution for select global node sets.

Moment advection in the coupled domain

$3600_{\vec{x}} \times 36_{\vec{k}}$ global nodes with $17_{\vec{x}} \times 9_{\vec{k}}$ stencil

Figure: Integrated wave action ($\mathrm{Hm}_{0}^{2} / 16$) initialized with a spatial and directional Gaussian bell (45° and 120° width) and 20° dominant direction

Coupled model domains

Spatial:

Directional-Frequency:

RBF-FD WAVE:

WAVEWATCH III comparison

$$
N_{\vec{x}}=4320, \quad \text { revolution }=1 / 2, \quad \text { dominant direction }=-30^{\circ}
$$

Solution

WW3
$4^{\circ} \times 3.25^{\circ}\left(N_{\bar{x}}=4320\right)$

Figure: Selected directional grid cell value initialized with a spatial Gaussian (57.2° width) and directional cosine20 -power (64° width) after $1 / 2$ revolution. The significant wave height is 2.5 m .

WAVEWATCH III comparison

$$
N_{\vec{x}}=44064, \quad \text { revolution }=1 / 2, \quad \text { dominant direction }=-30^{\circ}
$$

Solution

Figure: Selected directional grid cell value initialized with a spatial Gaussian (57.2° width) and directional cosine20 -power (64° width) after $1 / 2$ revolution. The significant wave height is 2.5 m .

WAVEWATCH III error

Relative total ℓ_{2}^{2} errors over all directions

Figure: Relative total ℓ_{2}^{2} errors after $1 / 2$ revolution for different WW3 grid resolutions.

RBF-FD-W versus WAVEWATCH III

Relative total ℓ_{2}^{2} errors over all directions

Figure: Comparison of relative total ℓ_{2}^{2} errors after $1 / 2$ revolution between RBF-FD-WAVE and WW3.

Outline

1. Scientific background
2. Coupled wave component
3. Overview of meshless approach
4. Kinematic prototype
5. Discussion

Wave action balance equation

The wave action balance equation can be derived on a coupled slab $\left(\vec{x}, \vec{k} \in \mathbb{R}^{2}\right)$ from the governing linear wave equations and is given by

Spectral transport

where

Spectral changes

- $\sigma(\vec{x}, \vec{k})=\{g|\vec{k}| \tanh [|\vec{k}| H(\vec{x})]\}^{1 / 2}$ is the intermediate-water dispersion relation
- $\Omega(\vec{x}, \vec{k})=\vec{U}(\vec{x}) \cdot \vec{k}+\sigma(\vec{x}, \vec{k})$ is the Doppler-shifted dispersion relation
- $\mathcal{W}(\vec{x}, \vec{k}, t)=\operatorname{g} \mathcal{S}_{\vec{k}}(\vec{k} ; \vec{x}, t) / \sigma(\vec{x}, \vec{k})$ is the spectral adiabatic invariant
- "Sources" encompass the non-kinematic physics of the waves (generation, dissipation, nonlinear interactions, etc.)

Spatial refinement

Figure: Comparison of current and potential spatial refinement tuning.

Next steps

Stage 2

- Replace current attenuation filter approach with physical boundaries

Stage 3

- Add source terms and wavenumber shifting (via time-splitting)

Figure: Examples of (a) boundary attenuation filter and (b) variable spatial node density.

Summary and conclusions

- WAVEWATCH III is now coupled to the NCAR Community Earth System Model $\left(3.2^{\circ} \times 4^{\circ}\right.$ spatial, $25_{f} \times 24_{\theta}$ spectral grid)
- A meshless approach using RBF-FDs is a viable alternative for future spectral wave models (particularly for use in global climate model simulations)
- A monochromatic kinematic prototype performs well with limited computation (e.g., runs on a laptop)
- In simple tests the prototype compares well against higher resolution WAVEWATCH III runs:
requires fewer unknowns ($\sim 1 / 12$) and is more accurate ($\sim 10 \times$)

Thank You!

Figure: A modern reinterpretation of Hokusai's "The Great Wave" (Murakami, "727").

